Mixed data fingerprinting with principal components analysis
Principal components analysis is applied to data sets to fingerprint the dataset or to compare the dataset to a "wild file" that may have been constructed from data found in the dataset. Principal components analysis allows for the reduction of data used for comparison down to a parsimonio...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Principal components analysis is applied to data sets to fingerprint the dataset or to compare the dataset to a "wild file" that may have been constructed from data found in the dataset. Principal components analysis allows for the reduction of data used for comparison down to a parsimonious compressed signature of a dataset. Datasets with different patterns among the variables will have different patterns of principal components. The principal components of variables (or a relevant subset thereof) in a wild file may be computed and statistically compared to the principal components of identical variables in a data provider's reference file to provide a score. This constitutes a unique and compressed signature of a file that can be used for identification and comparison with similarly defined patterns from other files. |
---|