Systems and methods for assessing quality of input text using recurrent neural networks

Systems and methods for assessing quality of input text using recurrent neural networks is disclosed. The system obtains input text from user and performs a comparison of each word from input text with words from dictionary (or trained data) to determine a closest recommended word for each word in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tommy, Robin, Sivaprasad, Sarath
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Systems and methods for assessing quality of input text using recurrent neural networks is disclosed. The system obtains input text from user and performs a comparison of each word from input text with words from dictionary (or trained data) to determine a closest recommended word for each word in the input text. The input text is further analyzed to determine context of each word based on at least a portion of input text, and based on determined context, at least one of correct sentences, incorrect sentences, and/or complex sentences are determined from the input text. Each word is converted to a vector based on concept(s) by comparing each word across sentences of input text to generate vectors set, and quality of the input text is assessed based on vectors set, the comparison, determined context and at least one of correct sentences, incorrect sentences, complex sentences, or combinations thereof.