Laser sensor for ultra-fine particle size detection

The invention describes a laser sensor module (100) for detecting ultra-fine particles (10) with a particle size of 300 nm or less, more preferably 200 nm or less, most preferably 100 nm or less, the laser sensor module (100) comprising: -at least one laser (110) being adapted to emit laser light to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moench, Holger, Jutte, Petrus Theodorus, Spruit, Johannes Hendrikus Maria, Van Der Lee, Alexander Marc, De Graaf, Pascal, Hellmig, Joachim Wilhelm, Ronda, Cornelis Reinder
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention describes a laser sensor module (100) for detecting ultra-fine particles (10) with a particle size of 300 nm or less, more preferably 200 nm or less, most preferably 100 nm or less, the laser sensor module (100) comprising: -at least one laser (110) being adapted to emit laser light to at least one focus region in reaction to signals provided by at least one electrical driver (130), -at least one detector (120) being adapted to determine a self-mixing interference signal of an optical wave within a laser cavity of the at least one laser (110), wherein the self-mixing interference signal is caused by reflected laser light reentering the laser cavity, the reflected laser light being reflected by a particle receiving at least a part of the laser light, -the laser sensor module (100) being arranged to perform at least one self-mixing interference measurement, -the laser sensor module (100) being adapted to determine a first particle size distribution function with a first sensitivity by means of at least one measurement result determined based on the at least one self-mixing interference measurement, the laser sensor module being further adapted to determine a second particle size distribution function with the second sensitivity, the second sensitivity being different from the first sensitivity, -the at least one evaluator (140) being adapted to determine a particle measure of the particle size of 300 nm or less by subtracting the second particle size distribution function multiplied with a calibration factor q from the first particle size distribution function. The invention further describes a corresponding method and computer program product. The invention enables a simple and low-cost particle detection module or particle detector based on laser self-mixing interference which can detect particles with a size of 100 nm or even less.