Methods for performing self-supervised learning of deep-learning based detection network by using deep Q-network and devices using the same
A method of self-supervised learning for detection network using deep Q-network includes steps of: performing object detection on first unlabeled image through the detection network trained with training database to generate first object detection information and performing learning operation on a f...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method of self-supervised learning for detection network using deep Q-network includes steps of: performing object detection on first unlabeled image through the detection network trained with training database to generate first object detection information and performing learning operation on a first state set corresponding to the first object detection information to generate a Q-value, if an action of the Q-value accepts the first unlabeled image, testing the detection network, retrained with the training database additionally containing a labeled image of the first unlabeled image, to generate a first accuracy, and if the action rejects the first unlabeled image, testing the detection network without retraining, to generate a second accuracy, and storing the first state set, the action, a reward of the first or the second accuracy, and a second state set of a second unlabeled image as transition vector, and training the deep Q-network by using the transition vector. |
---|