Warm start generalized additive mixed-effect (game) framework

In an example embodiment, a warm-start training solution is used to dramatically reduce the computational resources needed to train when retraining a generalized additive mixed-effect (GAME) model. The problem of retraining time is particularly applicable to GAME models, since these models take much...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shelkovnykov, Alex, Ma, Yiming, Fleming, Josh, Long, Bo, Chen, Bee-Chung
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an example embodiment, a warm-start training solution is used to dramatically reduce the computational resources needed to train when retraining a generalized additive mixed-effect (GAME) model. The problem of retraining time is particularly applicable to GAME models, since these models take much longer to train as the data grows. In the past, the strategy to reduce computational resources during retraining was to use less training data, but this affects the model quality, especially for GAME models, which rely on fine-grained sub-models at, for example, member or item levels. The present solution addresses the computational resources issues without sacrificing GAME model accuracy.