Machine learning detection of database injection attacks
Techniques and solutions are described for detecting malicious database activity, such as SQL injection attempts. A first machine learning classifier can be trained by comparing processed and unprocessed user input, where a difference between the two can indicate suspicious or malicious activity. Th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Techniques and solutions are described for detecting malicious database activity, such as SQL injection attempts. A first machine learning classifier can be trained by comparing processed and unprocessed user input, where a difference between the two can indicate suspicious or malicious activity. The trained classifier can be used to analyze user input before query execution. A second machine learning classifier is trained with a data set that includes call stack information for an application requesting execution of a dynamic query and query statistics associated with processing of the query at the database. The query of the application can be correlated with a corresponding database query by hashing the application query and the database query and comparing the hash values, where matching hash value indicate a common query. The trained classifier can monitor execution of future queries to identify queries having anomalous patterns, which may indicate malicious or suspicious activity. |
---|