Systems and methods for configuring programmable logic devices for deep learning networks
Systems and methods may configure a programmable logic device to efficiently run a deep learning (DL) network. Architecture code and algorithmic code may be generated. The architecture code may define convolutional and fully connected processor cores structured to run the layers of a Deep Neural Net...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Systems and methods may configure a programmable logic device to efficiently run a deep learning (DL) network. Architecture code and algorithmic code may be generated. The architecture code may define convolutional and fully connected processor cores structured to run the layers of a Deep Neural Network (DNN). The processor cores may be interconnected by a First In First Out (FIFO) memory. The architecture code may also define stride-efficient memories for implementing convolution. The algorithmic code may include configuration instructions for running the DNN's layers at the processor cores. The algorithmic code may also include a schedule for executing the configuration instructions on the processor cores, for moving network parameters to the processor cores, and for transferring outputs between the layers. |
---|