System and method for expanding and training convolutional neural networks for large size input images

According to exemplary methods of training a convolutional neural network, input images are received into a computerized device having an image processor. The image processor evaluates the input images using first convolutional layers. The number of first convolutional layers is based on a first siz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Paul, Peter, Xu, Beilei, Wshah, Safwan R, Gentner, Jess R, Bulan, Orhan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:According to exemplary methods of training a convolutional neural network, input images are received into a computerized device having an image processor. The image processor evaluates the input images using first convolutional layers. The number of first convolutional layers is based on a first size for the input images. Each layer of the first convolutional layers receives layer input signals comprising features of the input images and generates layer output signals that include signals from the input images and ones of the layer output signals from previous layers within the first convolutional layers. Responsive to an input image being a second size larger than the first size, additional convolutional layers are added to the convolutional neural network. The number of additional convolutional layers is based on the second size in relation to the first size. The additional convolutional layers are initialized using weights from the first convolutional layers. Feature maps comprising the layer output signals are created.