Automated analysis of petrographic thin section images using advanced machine learning techniques

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for automated analysis of petrographic thin section images. In one aspect, a method includes determining a first image of a petrographic thin section of a rock sample, and determining a feature vector...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Anifowose, Fatai A, Mezghani, Mokhles Mustapha
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for automated analysis of petrographic thin section images. In one aspect, a method includes determining a first image of a petrographic thin section of a rock sample, and determining a feature vector for each pixel of the first image. Multiple different regions of the petrographic thin section are determined by clustering the pixels of the first image based on the feature vectors, wherein one of the regions corresponds to grains in the petrographic thin section. The method further includes determining a second image of the petrographic thin section, including combining images of the petrographic thin section acquired with plane-polarized light and cross-polarized light. Multiple grains are segmented from the second image of the petrographic thin section based on the multiple different regions from the first image, and characteristics of the segmented grains are determined.