Digital signal routing circuit

An integrated circuit for digital signal routing. The integrated circuit has analog and digital inputs and outputs, including digital interfaces for connection to other integrated circuits. Inputs, including the digital interfaces, act as data sources. Outputs, including the digital interfaces, act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wigner, Jonathan Timothy, Mackay, Graeme G, McLeod, Gordon Richard
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An integrated circuit for digital signal routing. The integrated circuit has analog and digital inputs and outputs, including digital interfaces for connection to other integrated circuits. Inputs, including the digital interfaces, act as data sources. Outputs, including the digital interfaces, act as data destinations. The integrated circuit also includes signal processing blocks, which can act as data sources and data destinations. Signal routing is achieved by means of a multiply-accumulate block, which takes data from one or more data source and, after any required scaling, generates output data for a data destination. Data from a data source is buffered for an entire period of a data sample clock so that the multiply-accumulate block can retrieve the data at any point in the period, and output data of the multiply-accumulate block is buffered for an entire period of the data sample clock so that the data destination can retrieve the data at any point in the period. Multiple signal paths can be defined by configuration data supplied to the device, either by a user, or by software. The multiply-accumulate block operates on a time division multiplexed basis, so that multiple signal paths can be processed within one period of the sample clock. Each signal path has a respective sample clock rate, and paths with different sample clock rates can be routed through the multiply-accumulate block on a time division multiplexed basis independently of each other. Thus, speech signals at 8 kHz or 16 kHz can be processed concurrently with audio data at 44.ikHz or 48 kHz.