Adaptive PID controller tuning via deep reinforcement learning

Systems and methods are provided for using a Deep Reinforcement Learning (DRL) agent to provide adaptive tuning of process controllers, such as Proportional-Integral-Derivative (PID) controllers. The agent can monitor process controller performance, and if unsatisfactory, can attempt to improve it b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Badgwell, Thomas A, Subrahmanya, Niranjan A, Kovalski, Michael H, Liu, Wei D, Liu, Kuang-Hung
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Badgwell, Thomas A
Subrahmanya, Niranjan A
Kovalski, Michael H
Liu, Wei D
Liu, Kuang-Hung
description Systems and methods are provided for using a Deep Reinforcement Learning (DRL) agent to provide adaptive tuning of process controllers, such as Proportional-Integral-Derivative (PID) controllers. The agent can monitor process controller performance, and if unsatisfactory, can attempt to improve it by making incremental changes to the tuning parameters for the process controller. The effect of a tuning change can then be observed by the agent and used to update the agent's process controller tuning policy. It has been unexpectedly discovered that providing adaptive tuning based on incremental changes in tuning parameters, as opposed to making changes independent of current values of the tuning parameters, can provide enhanced or improved control over a controlled variable of a process.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10915073B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10915073B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10915073B23</originalsourceid><addsrcrecordid>eNrjZLBzTEksKMksS1UI8HRRSM7PKynKz8lJLVIoKc3LzEtXKMtMVEhJTS1QKErNzEvLL0pOzU3NK1HISU0sAsnzMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDA0tDUwNzYycjY2LUAABPKTCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Adaptive PID controller tuning via deep reinforcement learning</title><source>esp@cenet</source><creator>Badgwell, Thomas A ; Subrahmanya, Niranjan A ; Kovalski, Michael H ; Liu, Wei D ; Liu, Kuang-Hung</creator><creatorcontrib>Badgwell, Thomas A ; Subrahmanya, Niranjan A ; Kovalski, Michael H ; Liu, Wei D ; Liu, Kuang-Hung</creatorcontrib><description>Systems and methods are provided for using a Deep Reinforcement Learning (DRL) agent to provide adaptive tuning of process controllers, such as Proportional-Integral-Derivative (PID) controllers. The agent can monitor process controller performance, and if unsatisfactory, can attempt to improve it by making incremental changes to the tuning parameters for the process controller. The effect of a tuning change can then be observed by the agent and used to update the agent's process controller tuning policy. It has been unexpectedly discovered that providing adaptive tuning based on incremental changes in tuning parameters, as opposed to making changes independent of current values of the tuning parameters, can provide enhanced or improved control over a controlled variable of a process.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210209&amp;DB=EPODOC&amp;CC=US&amp;NR=10915073B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210209&amp;DB=EPODOC&amp;CC=US&amp;NR=10915073B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Badgwell, Thomas A</creatorcontrib><creatorcontrib>Subrahmanya, Niranjan A</creatorcontrib><creatorcontrib>Kovalski, Michael H</creatorcontrib><creatorcontrib>Liu, Wei D</creatorcontrib><creatorcontrib>Liu, Kuang-Hung</creatorcontrib><title>Adaptive PID controller tuning via deep reinforcement learning</title><description>Systems and methods are provided for using a Deep Reinforcement Learning (DRL) agent to provide adaptive tuning of process controllers, such as Proportional-Integral-Derivative (PID) controllers. The agent can monitor process controller performance, and if unsatisfactory, can attempt to improve it by making incremental changes to the tuning parameters for the process controller. The effect of a tuning change can then be observed by the agent and used to update the agent's process controller tuning policy. It has been unexpectedly discovered that providing adaptive tuning based on incremental changes in tuning parameters, as opposed to making changes independent of current values of the tuning parameters, can provide enhanced or improved control over a controlled variable of a process.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBzTEksKMksS1UI8HRRSM7PKynKz8lJLVIoKc3LzEtXKMtMVEhJTS1QKErNzEvLL0pOzU3NK1HISU0sAsnzMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JL40GBDA0tDUwNzYycjY2LUAABPKTCw</recordid><startdate>20210209</startdate><enddate>20210209</enddate><creator>Badgwell, Thomas A</creator><creator>Subrahmanya, Niranjan A</creator><creator>Kovalski, Michael H</creator><creator>Liu, Wei D</creator><creator>Liu, Kuang-Hung</creator><scope>EVB</scope></search><sort><creationdate>20210209</creationdate><title>Adaptive PID controller tuning via deep reinforcement learning</title><author>Badgwell, Thomas A ; Subrahmanya, Niranjan A ; Kovalski, Michael H ; Liu, Wei D ; Liu, Kuang-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10915073B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>Badgwell, Thomas A</creatorcontrib><creatorcontrib>Subrahmanya, Niranjan A</creatorcontrib><creatorcontrib>Kovalski, Michael H</creatorcontrib><creatorcontrib>Liu, Wei D</creatorcontrib><creatorcontrib>Liu, Kuang-Hung</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badgwell, Thomas A</au><au>Subrahmanya, Niranjan A</au><au>Kovalski, Michael H</au><au>Liu, Wei D</au><au>Liu, Kuang-Hung</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Adaptive PID controller tuning via deep reinforcement learning</title><date>2021-02-09</date><risdate>2021</risdate><abstract>Systems and methods are provided for using a Deep Reinforcement Learning (DRL) agent to provide adaptive tuning of process controllers, such as Proportional-Integral-Derivative (PID) controllers. The agent can monitor process controller performance, and if unsatisfactory, can attempt to improve it by making incremental changes to the tuning parameters for the process controller. The effect of a tuning change can then be observed by the agent and used to update the agent's process controller tuning policy. It has been unexpectedly discovered that providing adaptive tuning based on incremental changes in tuning parameters, as opposed to making changes independent of current values of the tuning parameters, can provide enhanced or improved control over a controlled variable of a process.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10915073B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
title Adaptive PID controller tuning via deep reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Badgwell,%20Thomas%20A&rft.date=2021-02-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10915073B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true