Adaptive PID controller tuning via deep reinforcement learning

Systems and methods are provided for using a Deep Reinforcement Learning (DRL) agent to provide adaptive tuning of process controllers, such as Proportional-Integral-Derivative (PID) controllers. The agent can monitor process controller performance, and if unsatisfactory, can attempt to improve it b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Badgwell, Thomas A, Subrahmanya, Niranjan A, Kovalski, Michael H, Liu, Wei D, Liu, Kuang-Hung
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Systems and methods are provided for using a Deep Reinforcement Learning (DRL) agent to provide adaptive tuning of process controllers, such as Proportional-Integral-Derivative (PID) controllers. The agent can monitor process controller performance, and if unsatisfactory, can attempt to improve it by making incremental changes to the tuning parameters for the process controller. The effect of a tuning change can then be observed by the agent and used to update the agent's process controller tuning policy. It has been unexpectedly discovered that providing adaptive tuning based on incremental changes in tuning parameters, as opposed to making changes independent of current values of the tuning parameters, can provide enhanced or improved control over a controlled variable of a process.