Arbitrary pulse shaping with picosecond resolution over multiple-nanosecond records
The present invention extends the resolution capability for shaping optical pulses on laser systems from the current state of the art resolution of ˜250 ps to ˜1 ps by utilizing a hybrid of EOM and spectral shaping technologies. In one embodiment, a short pulse derived from a mode-locked laser oscil...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present invention extends the resolution capability for shaping optical pulses on laser systems from the current state of the art resolution of ˜250 ps to ˜1 ps by utilizing a hybrid of EOM and spectral shaping technologies. In one embodiment, a short pulse derived from a mode-locked laser oscillator is dispersed using a dispersive stretcher to about 250 ps, providing a linear mapping of spectrum to time. A typical spectral shaper is used to directly write the desired temporal pattern in the spectral domain to produce a crudely patterned waveform that may also suffer from chirp. The chirp is removed by a process known as difference frequency generation by mixing it with a pulse derived from an equally chirped frequency-doubled pump in an optical parametric amplifier. The pattern is then focused in time, which is accomplished in one embodiment by propagating the pattern through a dispersive element. |
---|