Stacked convolutional long short-term memory for model-free reinforcement learning
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for controlling an agent interacting with an environment. One of the methods includes obtaining a representation of an observation; processing the representation using a convolutional long short-term memo...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methods, systems, and apparatus, including computer programs encoded on computer storage media, for controlling an agent interacting with an environment. One of the methods includes obtaining a representation of an observation; processing the representation using a convolutional long short-term memory (LSTM) neural network comprising a plurality of convolutional LSTM neural network layers; processing an action selection input comprising the final LSTM hidden state output for the time step using an action selection neural network that is configured to receive the action selection input and to process the action selection input to generate an action selection output that defines an action to be performed by the agent at the time step; selecting, from the action selection output, the action to be performed by the agent at the time step in accordance with an action selection policy; and causing the agent to perform the selected action. |
---|