Variable compression ratio engine

A internal combustion engine comprises an engine block defining a cylinder bore, and a piston slideably supported within the cylinder bore. The piston slides reciprocally within the cylinder bore throughout an engine cycle through a piston compression stroke having a compression stroke length and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baker, Rodney E, Heinbuch, Ryan M, Ketterer, Justin E
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A internal combustion engine comprises an engine block defining a cylinder bore, and a piston slideably supported within the cylinder bore. The piston slides reciprocally within the cylinder bore throughout an engine cycle through a piston compression stroke having a compression stroke length and a piston expansion stroke having an expansion stroke length. A crankshaft is rotatably supported by the engine block and rotatable about a crank axis, and a drive gear is co-axially mounted on the crankshaft. A control shaft is rotatably supported by the engine block and rotatable about a control axis that is parallel to and distal from the crank axis. A driven gear is coaxially mounted on the control shaft. A link rod is rotatably connected to the crankshaft and rotatable relative to the crankshaft about an axis that is parallel to and distal from the crank axis. A lower connecting rod has a first end rotatably connected to the link rod, and a second end rotatably connected to the control shaft and is rotatable relative to the control shaft about an axis that is parallel to and distal from the control axis, and an upper connecting rod has a first end rotatably connected to the link rod, and a second end rotatably connected to the piston. A phasing device is supported by the engine block between and interconnecting the crankshaft and the control shaft, and includes an idler shaft rotatable about a phase axis, an electric motor adapted to rotate the idler shaft, a gearbox mounted co-axially on the idler shaft, a crank gear supported on the gearbox co-axial to the idler shaft, and a control shaft gear mounted co-axially on the idler shaft distal from the crank gear. The drive gear engages the crank gear and transfers rotation of the crank shaft to the idler shaft, and the driven gear engages the control shaft gear and transfers rotation of the idler shaft to the control shaft, and when the electric motor rotates the idler shaft, the gearbox is adapted to allow the rotational speed of the idler shaft to change relative to the rotational speed of the crank shaft to change the rotational speed of the control shaft relative to the crankshaft and change the clearance volume.