Building heavy hitter summary for query optimization
Constructing a heavy hitter summary for query optimization. The heavy hitter summary is constructed by sampling each of multiple partitions of a dataset using a uniformed sampling rate. For each partition, performing a two-stage heavy hitter estimation process to determine whether an estimated frequ...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Constructing a heavy hitter summary for query optimization. The heavy hitter summary is constructed by sampling each of multiple partitions of a dataset using a uniformed sampling rate. For each partition, performing a two-stage heavy hitter estimation process to determine whether an estimated frequency of a key of the sampled data units may be included in a partition-level heavy hitter summary. Constructing a partition-level heavy hitter summary for each partition of the dataset based on the keys determined via the two-stage process, and constructing a dataset-level heavy hitter summary based on the partition-level heavy hitter summary. The dataset-level heavy hitter summary may be used to optimize query trees. |
---|