Adaptive pursuit learning method to mitigate small-cell interference through directionality

A learning protocol for distributed antenna state selection in directional cognitive small-cell networks is described. Antenna state selection is formulated as a nonstationary multi-armed bandit problem and an effective solution is provided based on the adaptive pursuit method from reinforcement lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nguyen, Danh H, Paatelma, Anton, Dandekar, Kapil R, Kandasamy, Nagarajan, Saarnisaari, Harri
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A learning protocol for distributed antenna state selection in directional cognitive small-cell networks is described. Antenna state selection is formulated as a nonstationary multi-armed bandit problem and an effective solution is provided based on the adaptive pursuit method from reinforcement learning. A cognitive small cell testbed, called WARP-TDMAC, provides a useful software-defined radio package to explore the usefulness of compact, electronically reconfigurable antennas in dense small-cell configurations. A practical implementation of the adaptive pursuit method provides a robust distributed antenna state selection protocol for cognitive small-cell networks. Test results confirm that directionality provides significant advantages over omnidirectional transmission which suffers high throughput reduction and complete link outages at above-average jamming or cross-link interference power.