Crowdsourcing and deep learning based segmenting and karyotyping of chromosomes

The most challenging problems in karyotyping are segmentation and classification of overlapping chromosomes in metaphase spread images. Often chromosomes are bent in different directions with varying degrees of bend. Tediousness and time consuming nature of the effort for ground truth creation makes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sharma, Monika, Karande, Shirish Subhash, Hebbalaguppe, Ramya Sugnana Murthy, Vig, Lovekesh, Sriraman, Anand
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The most challenging problems in karyotyping are segmentation and classification of overlapping chromosomes in metaphase spread images. Often chromosomes are bent in different directions with varying degrees of bend. Tediousness and time consuming nature of the effort for ground truth creation makes it difficult to scale the ground truth for training phase. The present disclosure provides an end-to-end solution that reduces the cognitive burden of segmenting and karyotyping chromosomes. Dependency on experts is reduced by employing crowdsourcing while simultaneously addressing the issues associated with crowdsourcing. Identified segments through crowdsourcing are pre-processed to improve classification achieved by employing deep convolutional network (CNN).