Deep learning driven multi-channel filtering for speech enhancement
A number of features are extracted from a current frame of a multi-channel speech pickup and from side information that is a linear echo estimate, a diffuse signal component, or a noise estimate of the multi-channel speech pickup. A DNN-based speech presence probability is produced for the current f...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A number of features are extracted from a current frame of a multi-channel speech pickup and from side information that is a linear echo estimate, a diffuse signal component, or a noise estimate of the multi-channel speech pickup. A DNN-based speech presence probability is produced for the current frame, where the SPP value is produced in response to the extracted features being input to the DNN. The DNN-based SPP value is applied to configure a multi-channel filter whose input is the multi-channel speech pickup and whose output is a single audio signal. In one aspect, the system is designed to run online, at low enough latency for real time applications such voice trigger detection. Other aspects are also described and claimed. |
---|