Neuron-centric local learning rate for artificial neural networks to increase performance, learning rate margin, and reduce power consumption
Artificial neural networks (ANNs) are a distributed computing model in which computation is accomplished using many simple processing units (called neurons) and the data embodied by the connections between neurons (called synapses) and the strength of these connections (called synaptic weights). An...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Artificial neural networks (ANNs) are a distributed computing model in which computation is accomplished using many simple processing units (called neurons) and the data embodied by the connections between neurons (called synapses) and the strength of these connections (called synaptic weights). An attractive implementation of ANNs uses the conductance of non-volatile memory (NVM) elements to code the synaptic weight. In this application, the non-idealities in the response of the NVM (such as nonlinearity, saturation, stochasticity and asymmetry in response to programming pulses) lead to reduced network performance compared to an ideal network implementation. Disclosed is a method that improves performance by implementing a learning rate parameter that is local to each synaptic connection, a method for tuning this local learning rate, and an implementation that does not compromise the ability to train many synaptic weights in parallel during learning. |
---|