Spam classification system based on network flow data

In an example embodiment, a computer-implemented method comprises obtaining labels from messages associated with an email service provider, wherein the labels indicate for each message IP how many spam and non-spam messages have been received; obtaining network data features from a cloud service pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kashi, Ori, Newman, Philip, Yom-Tov, Elad, Neuvirth, Hani, Alon, Daniel, Ronen, Royi
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an example embodiment, a computer-implemented method comprises obtaining labels from messages associated with an email service provider, wherein the labels indicate for each message IP how many spam and non-spam messages have been received; obtaining network data features from a cloud service provider; providing the labels and network data features to a machine learning application; generating a prediction model representing an algorithm for determining whether a particular set of network data features are spam or not; applying the prediction model to network data features for an unlabeled message; and generating an output of the prediction model indicating a likelihood that the unlabeled message is spam.