Hierarchical deep convolutional neural network for image classification
Hierarchical branching deep convolutional neural networks (HD-CNNs) improve existing convolutional neural network (CNN) technology. In a HD-CNN, classes that can be easily distinguished are classified in a higher layer coarse category CNN, while the most difficult classifications are done on lower l...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hierarchical branching deep convolutional neural networks (HD-CNNs) improve existing convolutional neural network (CNN) technology. In a HD-CNN, classes that can be easily distinguished are classified in a higher layer coarse category CNN, while the most difficult classifications are done on lower layer fine category CNNs. Multinomial logistic loss and a novel temporal sparsity penalty may be used in HD-CNN training. The use of multinomial logistic loss and a temporal sparsity penalty causes each branching component to deal with distinct subsets of categories. |
---|