Systems and methods for implementing efficient cross-fading between compressed audio streams
Systems and methods are presented for efficient cross-fading (or other multiple clip processing) of compressed domain information streams on a user or client device, such as a telephone, tablet, computer or MP3 player, or any consumer device with audio playback. Exemplary implementation systems may...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Systems and methods are presented for efficient cross-fading (or other multiple clip processing) of compressed domain information streams on a user or client device, such as a telephone, tablet, computer or MP3 player, or any consumer device with audio playback. Exemplary implementation systems may provide cross-fade between AAC/Enhanced AAC Plus (EAACPlus) information streams or between MP3 information streams or even between information streams of unmatched formats (e.g. AAC to MP3 or MP3 to AAC). Furthermore, these systems are distinguished by the fact that cross-fade is directly applied to the compressed bitstreams so that a single decode operation may be performed on the resulting bitstream. Moreover, using the described methods, similar cross fade in the compressed domain between information streams utilizing other formats of compression, such as, for example, MP2, AC-3, PAC, etc. can also be advantageously implemented. Thus, in exemplary embodiments of the present invention a set of frames from each input stream associated with the time interval in which a cross fade is decoded, and combined and recoded with a cross fade or other effect now in the compressed bitstream. Once sent through the client device's decoder, the user hears the transitional effect. The only input data that is decoded and processed is that associated with the portion of each stream used in the crossfade, blend or other interstitial, and thus the vast majority of the input streams are left compressed. |
---|