Optimizations for zero-forcing precoding
Massive MIMO systems provide impressive spectral efficiencies through beam forming techniques such as Zero-Forcing Precoding (ZFP). Unfortunately, ZFP imposes a considerable computational burden for each additional user. Relationships between the antennas, the users, and the environment must be rapi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Massive MIMO systems provide impressive spectral efficiencies through beam forming techniques such as Zero-Forcing Precoding (ZFP). Unfortunately, ZFP imposes a considerable computational burden for each additional user. Relationships between the antennas, the users, and the environment must be rapidly, and accurately, reassessed during ZFP on an ongoing basis. Brute force approaches to these reassessments may be unfeasible for certain hardware and design conditions. Accordingly, various of the proposed embodiments implement representational optimizations which reduce the computational burden for each reassessment. Some embodiments employ "dynamic sectorization", whereby the serviced environment is divided into regions and the corresponding representation is modified to reduce the computations of each reassessment. A backplane, antenna separation/directivity and thresholds for environment noise may each be adjusted to reduce the computational burden. |
---|