Methods and systems for performing radio-frequency signal noise reduction in the absence of noise models
Time-varying input signals are denoised by a neural network. The neural network learns features associated with noise added to reference signals. The neural network recognizes features of noisy time-varying input signals mixed with the noise that at least partially match at least some of the feature...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time-varying input signals are denoised by a neural network. The neural network learns features associated with noise added to reference signals. The neural network recognizes features of noisy time-varying input signals mixed with the noise that at least partially match at least some of the features associated with the noise. The neural network predicts denoised time-varying output signals that correspond to the time-varying input signals based on the recognized features of the noisy time-varying input signals that at least partially match at least some of the features associated with the noise. |
---|