Methods and systems for performing radio-frequency signal noise reduction in the absence of noise models

Time-varying input signals are denoised by a neural network. The neural network learns features associated with noise added to reference signals. The neural network recognizes features of noisy time-varying input signals mixed with the noise that at least partially match at least some of the feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Straatemeier, Logan M, Migliori, Benjamin J, Walton, Michael W, Gebhardt, Daniel J
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time-varying input signals are denoised by a neural network. The neural network learns features associated with noise added to reference signals. The neural network recognizes features of noisy time-varying input signals mixed with the noise that at least partially match at least some of the features associated with the noise. The neural network predicts denoised time-varying output signals that correspond to the time-varying input signals based on the recognized features of the noisy time-varying input signals that at least partially match at least some of the features associated with the noise.