Fracture-resistant self-lubricating wear surfaces

Fracture-resistant and self-lubricating wear surfaces are provided. In an implementation, a machine surface that is subject to wear is coated with or is constructed of a metallic nanostructure to resist the wear and to provide fracture-resistant hardness, built-in lubrication, and thermal conductivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Madhavan, Raghu, Marya, Manuel P, Roy, Indranil
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fracture-resistant and self-lubricating wear surfaces are provided. In an implementation, a machine surface that is subject to wear is coated with or is constructed of a metallic nanostructure to resist the wear and to provide fracture-resistant hardness, built-in lubrication, and thermal conductivity for heat-sinking friction. The metallic nanostructured surface may be used, for example, on a face seal, bushing, bearing, thrust member, or hydraulic flow passage of an electric submersible pump. In an implementation, the metallic nanostructured surface is a nanocrystalline alloy including nanograin twins of a body-centered cubic (BCC), face-centered cubic (FCC), or hexagonal closest packed (HCP) metal. The nanostructured alloy may include atoms of copper, silver, gold, iron, nickel, palladium, platinum, rhodium, beryllium, magnesium, titanium, zirconium, or cobalt, and may provide more hardness and lubricity than diamond-like carbon coatings or carbides.