Conditional random field model compression

Features are disclosed for generating models, such as conditional random field ("CRF") models, that consume less storage space and/or transmission bandwidth than conventional models. In some embodiments, the generated CRF models are composed of fewer or alternate components in comparison w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Wei, Kiss, Imre Attila, Kumar, Anjishnu
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chen, Wei
Kiss, Imre Attila
Kumar, Anjishnu
description Features are disclosed for generating models, such as conditional random field ("CRF") models, that consume less storage space and/or transmission bandwidth than conventional models. In some embodiments, the generated CRF models are composed of fewer or alternate components in comparison with conventional CRF models. For example, a system generating such CRF models may forgo the use of large dictionaries or other cross-reference lists that map information extracted from input (e.g., "features") to model parameters; reduce in weight (or exclude altogether) certain model parameters that may not have a significant effect on model accuracy; and/or reduce the numerical precision of model parameters.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US10140581B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US10140581B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US10140581B13</originalsourceid><addsrcrecordid>eNrjZNByzs9LySzJzM9LzFEoSsxLyc9VSMtMzUlRyM1PSc1RSM7PLShKLS4GKuBhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYYGhiYGphaGTobGxKgBAE9eKWc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Conditional random field model compression</title><source>esp@cenet</source><creator>Chen, Wei ; Kiss, Imre Attila ; Kumar, Anjishnu</creator><creatorcontrib>Chen, Wei ; Kiss, Imre Attila ; Kumar, Anjishnu</creatorcontrib><description>Features are disclosed for generating models, such as conditional random field ("CRF") models, that consume less storage space and/or transmission bandwidth than conventional models. In some embodiments, the generated CRF models are composed of fewer or alternate components in comparison with conventional CRF models. For example, a system generating such CRF models may forgo the use of large dictionaries or other cross-reference lists that map information extracted from input (e.g., "features") to model parameters; reduce in weight (or exclude altogether) certain model parameters that may not have a significant effect on model accuracy; and/or reduce the numerical precision of model parameters.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181127&amp;DB=EPODOC&amp;CC=US&amp;NR=10140581B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181127&amp;DB=EPODOC&amp;CC=US&amp;NR=10140581B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Kiss, Imre Attila</creatorcontrib><creatorcontrib>Kumar, Anjishnu</creatorcontrib><title>Conditional random field model compression</title><description>Features are disclosed for generating models, such as conditional random field ("CRF") models, that consume less storage space and/or transmission bandwidth than conventional models. In some embodiments, the generated CRF models are composed of fewer or alternate components in comparison with conventional CRF models. For example, a system generating such CRF models may forgo the use of large dictionaries or other cross-reference lists that map information extracted from input (e.g., "features") to model parameters; reduce in weight (or exclude altogether) certain model parameters that may not have a significant effect on model accuracy; and/or reduce the numerical precision of model parameters.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNByzs9LySzJzM9LzFEoSsxLyc9VSMtMzUlRyM1PSc1RSM7PLShKLS4GKuBhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYYGhiYGphaGTobGxKgBAE9eKWc</recordid><startdate>20181127</startdate><enddate>20181127</enddate><creator>Chen, Wei</creator><creator>Kiss, Imre Attila</creator><creator>Kumar, Anjishnu</creator><scope>EVB</scope></search><sort><creationdate>20181127</creationdate><title>Conditional random field model compression</title><author>Chen, Wei ; Kiss, Imre Attila ; Kumar, Anjishnu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US10140581B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Kiss, Imre Attila</creatorcontrib><creatorcontrib>Kumar, Anjishnu</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Wei</au><au>Kiss, Imre Attila</au><au>Kumar, Anjishnu</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Conditional random field model compression</title><date>2018-11-27</date><risdate>2018</risdate><abstract>Features are disclosed for generating models, such as conditional random field ("CRF") models, that consume less storage space and/or transmission bandwidth than conventional models. In some embodiments, the generated CRF models are composed of fewer or alternate components in comparison with conventional CRF models. For example, a system generating such CRF models may forgo the use of large dictionaries or other cross-reference lists that map information extracted from input (e.g., "features") to model parameters; reduce in weight (or exclude altogether) certain model parameters that may not have a significant effect on model accuracy; and/or reduce the numerical precision of model parameters.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US10140581B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Conditional random field model compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chen,%20Wei&rft.date=2018-11-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS10140581B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true