Conditional random field model compression

Features are disclosed for generating models, such as conditional random field ("CRF") models, that consume less storage space and/or transmission bandwidth than conventional models. In some embodiments, the generated CRF models are composed of fewer or alternate components in comparison w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Wei, Kiss, Imre Attila, Kumar, Anjishnu
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Features are disclosed for generating models, such as conditional random field ("CRF") models, that consume less storage space and/or transmission bandwidth than conventional models. In some embodiments, the generated CRF models are composed of fewer or alternate components in comparison with conventional CRF models. For example, a system generating such CRF models may forgo the use of large dictionaries or other cross-reference lists that map information extracted from input (e.g., "features") to model parameters; reduce in weight (or exclude altogether) certain model parameters that may not have a significant effect on model accuracy; and/or reduce the numerical precision of model parameters.