Systems and methods for contact localization through spatially overlapping signals

Achieving high spatial resolution in contact sensing for robotic manipulation often comes at the price of increased complexity in fabrication and integration. One traditional approach is to fabricate a large number of taxels, each delivering an individual, isolated response to a stimulus. In contras...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Piacenza, Pedro, Kymissis, Ioannis, Ciocarlie, Matei, Hoon Park, Steve Jeung
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Achieving high spatial resolution in contact sensing for robotic manipulation often comes at the price of increased complexity in fabrication and integration. One traditional approach is to fabricate a large number of taxels, each delivering an individual, isolated response to a stimulus. In contrast, proposed sensor includes a continuous volume of soft material, e.g., a piezoresistive elastomer with a number of terminals embedded inside. Piezoresistive effects can be measured between all pairs of terminals in the set, and this rich signal set can contain the information needed to pinpoint contact location with high accuracy using regression algorithms. Submillimeter median accuracy can be demonstrated in locating contact on a 10 mm by 16 mm sensor using only four terminals (creating six unique pairs). In addition to extracting more information from fewer wires, this approach lends itself to simple fabrication methods and makes no assumptions about the underlying geometry, simplifying future integration on robot fingers.