METHOD AND APPARATUS FOR DETERMINING TEMPERATURE OF MOVING OBJECT SURFACES IN INTERMEDIATE CHECK OF TEMPERATURE MAINLY OF FIBROUS ARTICLES AND WIRES IN PRODUCTION PROCESS THEREOF

The invention relates to a method of and an apparatus for measuring surface temperature of especially moving objects, advantageously measuring the temperature of fibrous products, and particularly of wires during production. The essence of the method lies in that two concentric shells not being cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LASLO KISHSH,HU, DYULA GROF,HU, LASLO BOLIO,HU, CHABA SELDEN,HU, ARPAD FALUDI,HU, ISHTVAN MITKHADAK,HU, INRE VARGA,HU
Format: Patent
Sprache:eng ; rus
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention relates to a method of and an apparatus for measuring surface temperature of especially moving objects, advantageously measuring the temperature of fibrous products, and particularly of wires during production. The essence of the method lies in that two concentric shells not being contiguous with either the object to be measured or with one another are fitted to the object to be measured, temperature is sensed in the two end locations and in the central region of the inner shell, and in the central region of the outer shell, these values are brought to be equal to the value measured in the central region of the inner shell by dissipation or by heat transfer (heating), then temperature is measured in the central region of the inner shell. The essence of the apparatus lies in that it comprises two concentric shells separated from one another, an inner sensing and an outer compensating shell, being provided with heated surfaces, and dissipating elements, respectively. The method and the apparatus according to the invention are suitable for measuring surface temperature of moving elements, particularly of wires, fibres, strips moving at a speed of 0 to 65 m/s, irrespective of surface quality, material, or relatively low temperature ranges, where temperature radiation is hard to measure.