DESIGN AND TECHNOLOGY TO MANUFACTURE INTEGRAL MICROMECHANICAL RELAY WITH MOVABLE ELECTRODE AS STRUCTURE WITH PIEZOELECTRIC LAYER
FIELD: electricity.SUBSTANCE: method to manufacture an integral micromechanical relay with a movable electrode in the form of a structure with a piezoelectric layer, comprising a substrate, coated with a dielectric layer with a lower (fixed) electrode and a movable electrode, consisting serially of...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng ; rus |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | FIELD: electricity.SUBSTANCE: method to manufacture an integral micromechanical relay with a movable electrode in the form of a structure with a piezoelectric layer, comprising a substrate, coated with a dielectric layer with a lower (fixed) electrode and a movable electrode, consisting serially of a lower current-conductive layer, a dielectric layer with high elastic properties, a medium current-conductive layer, a piezoelectric layer, an upper current-conductive layer, arranged on the surface of the above substrate is realised on the surface of silicon plates. Development of an integral micromechanical relay with a movable electrode in the form of a structure with a piezoelectric layer is carried out in a single process cycle with simplified manufacturing technology compatible with technology of production of integrated circuits, in which formation of a movable electrode is possible in the form of a cantilever or in the form of a beam and includes the following operations: formation of a film SiNon the surface of the silicon substrate by the method of SiNpyrolysis; sputtering of a TiN layer and formation of a "lower electrode" structure by the method of projection photolithography and plasma-chemical etching of the TiN layer; deposition of a layer of PSG (phosphate-silicate glass) by the method of chemical deposition from a gas phase and formation of a sacrificial layer on its basis by the method of liquid chemical etching; sputtering of the first TiN layer; deposition of the dielectric layer SiN; sputtering of the second TiN layer; deposition of the piezoelectric layer of lead zirconate titanate (LZT); sputtering of the third TiN layer; plasma-chemical etching of the layers: the third TiN layer, the LZT layer, the second TiN layer, the SiNlayer, the first TiN layer with formation of a movable multilayer electrode and opening of the sacrificial layer of PSG, liquid chemical etching of the sacrificial PSG layer with formation of an air gap between a fixed and a movable electrodes.EFFECT: increased reliability and extended service life of a micromechanical relay, using microelectronic technology for production of a micromechanical relay makes it possible to minimise device dimensions down to 20-80 mcm and to simplify technology of its production.3 cl, 5 dwg
Изобретение относится к области электронной техники и может быть использовано при изготовлении приборов микроэлектромеханических систем, в частности интегральных микромеханических реле и устройств на их |
---|