METHOD OF BLOOD SUBSTITUTE PRODUCTION AND RELATED INSTALLATION FOR METHOD IMPLEMENTATION

FIELD: medicine. ^ SUBSTANCE: offered is method of blood substitute production and related installation for method implementation. Method of blood substitute production includes production of deoxygenated haemoglobin, its polymerisation and purification. Production of deoxygenated haemoglobin includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SIVAKOVA NINA PETROVNA, ROZIEV RAKHIMDZHAN AKHMETDZHANOVICH, KHOMICHENOK VIKTOR VLADIMIROVICH, SOFRONOVA OL'GA VLADIMIROVNA, BRUSKOVA OL'GA BORISOVNA, KUZNETSOVA NINA PETROVNA, MOLOKOVSKAJA IRINA EVGEN'EVNA, SELIVANOV EVGENIJ ALEKSEEVICH, GONCHAROVA ANNA JAKOVLEVNA, TSYB ANATOLIJ FEDOROVICH, PODGORODNICHENKO VLADIMIR KONSTANTINOVICH, MISHAEVA RIMMA NIKODIMOVNA, GUDKIN LEV ROMANOVICH, PANARIN EVGENIJ FEDOROVICH
Format: Patent
Sprache:eng ; rus
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:FIELD: medicine. ^ SUBSTANCE: offered is method of blood substitute production and related installation for method implementation. Method of blood substitute production includes production of deoxygenated haemoglobin, its polymerisation and purification. Production of deoxygenated haemoglobin includes haemolysis of water addition to erythrocytic mass, stroma separation, non-heme protein precipitation and removal from produced haemoglobin solution. Polymerisation includes processing of produced deoxygenated haemoglobin with modified glutaric aldehyde and restoration with sodium borane, with purification including ultra filtration. Deoxygenated haemoglobin is produced using leukocyte-free erythrocytic mixture. Non-heme proteins are precipitated by concentrated sodium chloride solution added to haemoglobin solution. Removal of non-heme proteins is followed with ultra filtration concentration of haemoglobin solution. Haemoglobin is produced in polymeric disposable containers, while deoxygenation and polymerisation are carried out in gas vortex reactor with nitrogen atmosphere within 1-6 hours each. Diafiltration purification is performed in polymeric disposable containers on shutoff dampers to produce end product molecular weight within 100 kDa to 450 kDa. Method allows for simplified production of polyhaemoglobin with lowered cost and higher outcome. Related installation for method implementation includes series haemoglobin production area, haemoglobin polymerisation reactor and end-product purification system. Haemoglobin production area contains series haemolysis tank with filtration manifold for stroma separation, non-heme protein precipitation tank with filtration manifold for removal of precipitated non-heme proteins. End product purification system contains ultra filtration tanks and units with shutoff dampers. All tanks within haemoglobin production area are polymeric disposable containers. Non-heme protein precipitation tank is connected to the tank for concentrated solution of sodium chloride. Polymerisation reactor is designed as gas vortex unit. End product purification system tanks are polymeric disposable containers. Haemoglobin production area, haemoglobin polymerisation reactor and end product purification system, as well as all tanks and units are interconnected by means of sterile rapid-action coupling. ^ EFFECT: allows for reduced material consumption of installation with higher productivity, sterile conditions of technological process. ^ 6