PROCEDURE FOR PREDICTION OF MULTI-VARIATE TIME SERIES USING BLIND SEPARATION OF INDEPENDENT SOURCES

The invention relates to a process for prediction of multi-variate time series, with applicability in the fields of engineering, physical sciences, biology, medicine, sociology, hydrology, geophysics, economy, facing measurement and observation data analysis. According to the invention, the process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TUDORA ELEONORA, IANCULESCU MARILENA, POPESCU THEODOR DAN, ALEXANDRU ADRIANA
Format: Patent
Sprache:eng ; rum
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The invention relates to a process for prediction of multi-variate time series, with applicability in the fields of engineering, physical sciences, biology, medicine, sociology, hydrology, geophysics, economy, facing measurement and observation data analysis. According to the invention, the process transfers the issue which is the object of analysis from the space of the original data into the space of independent sources, of very much reduced size, where a wide range of methods and techniques are available for modelling and predicting univariate time series, the results of independent source prediction being then transferred back into the original space of the multi-variate time series, using the independent source mixing model obtained from their blind separation. Invenţia se referă la un procedeu de predicţie a seriilor de timp multivariabile, cu aplicabilitate în domeniile ingineriei, ştiinţelor fizice, biologiei, medicinii, sociologiei, hidrologiei, geofizicii, economiei care se confruntă cu analiza unor date de măsură şi observaţie. Procedeul conform invenţiei realizează transferul problemei, care face obiectul analizei, din spaţiul datelor originale în spaţiul surselor independente, de dimensiune mult redusă, şi unde se dispune de un arsenal bogat de metode şi tehnici de modelare şi predicţie a seriilor de timp monovariabile, rezultatele predicţiei surselor independente fiind transferate apoi în spaţiul original al seriei de timp multivariabile, utilizând modelul de mixare al surselor independente, rezultat în urma separării "oarbe" a acestora.