SYSTEM AND PROCESS FOR TESTING THE EFFECT OF PULSED AND SYNCHRONIZED FLOWS OF LASER-ACCELERATED PARTICLES

The patent application refers to a system and method to test components, circuits and complex equipment, used in order to determine the effect of an external particle flux and of radiation, with different energies, upon the characteristics and operating parameters and, if applicable, upon the progra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PISO MARIUS-IOAN, GANCIU PETCU MIHAI, MARGHITU OCTAV, DABU RĂZVAN-VICTOR-ANTON, STOICAN OVIDIU-SORIN, GROZA ANDREEA-LILIANA, SURMEIAN AGAVNI, MORJAN ION, JULEA ANDREEA-MARIA, MIHALCEA BOGDAN-VASILE, DISPLASU CONSTANTIN
Format: Patent
Sprache:eng ; rum
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The patent application refers to a system and method to test components, circuits and complex equipment, used in order to determine the effect of an external particle flux and of radiation, with different energies, upon the characteristics and operating parameters and, if applicable, upon the program which controls the operation of components, circuits and complex equipment located on-board satellites, space ships or planes flying at high altitudes, that may be part of control systems for nuclear reactors or particle accelerators, intended for handling nuclear materials or waste, or used in areas exposed to nuclear accidents. We suggest a method to generate two or more pulsed fluxes of particles, that can eventually be associated with the emission of gamma or X ray radiation, characterized by specific space configurations, with an aim to use them to perform radiation hardening tests on components and complex systems (intended to operate in outer space or in very demanding environments such as nuclear plants or particle accelerators). According to the patent application, the system is made out of at least two separate laser- plasma particle accelerators (3, 4), placed in different locations with respect to the subsystem (1) under test, fixed on the holder system (2) which is able to rotate and translate, horizontally and vertically, so that the incident particle fluxes (5 and 6) can be applied under different optical angles and to different areas of the subsystem (1). Depending on their design, the laser-plasma accelerators (3 and 4) generate at least two pulsed fluxes of accelerated particles (5 and 6) that may contain identical or different types of particles, by applying incident laser pulses (9 and 10) delivered by two separate high power lasers (7 and 8). The laser beam (9) generated by the high power laser (7) is guided by a mirror (11) towards a parabolic mirror (13) that focuses the beam at the input of a laser-plasma accelerator (3). The laser beam (10) delivered by the high power laser (8), is guided by a mirror (12) towards a parabolic mirror (14), that focuses the beam at the input of another laser-plasma accelerator (4). According to the patent application, the method consists of a calibration procedure and the determination of the operating parameters of the subsystem (1) under test, i) in absence of particle fluxes (5 and 6), ii) in presence of particle fluxes (5 and 6), and iii) after applying the particle fluxes (5 and 6) to the subsystem (