METHOD OF OPTIMIZING A PROGRESSIVE OPHTHALMIC MULTIFOCAL LENS
The lens has a mean sphere and a cylinder at each of points of an aspherical surface of the lens. A main progression meridian passes through far, near and intermediate vision regions. Differences between maximum cylinder values over a distance of 20 mm at both sides of the meridian have an absolute...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; por |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The lens has a mean sphere and a cylinder at each of points of an aspherical surface of the lens. A main progression meridian passes through far, near and intermediate vision regions. Differences between maximum cylinder values over a distance of 20 mm at both sides of the meridian have an absolute value less than or equal to 0.30 diopters. An absolute value of difference between maximum and minimum values of cylinder at each side of the meridian is less than or equal to the product of power addition and a constant having a value of 0.10. The power addition is defined as a difference in the mean sphere between a reference point (VP) of the near vision region and a reference point (VL) of the far vision region, and is greater than or equal to 2.50 diopters. |
---|