Method and the system for the analysis of the geological structure and relative stresses in the layers situated over the mining headings in the deep mines

In the proposed method of analysis of geological structure and relative changes in stress in the layers located above the mining workings of an underground mine the data from the mobile measurement data recorder (3) and from the central station of mine seismic system (10) obtained as a result of clo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SIERADZKI, PRZEMYSŁAW, ISAKOW, ZBIGNIEW, PILECKI, ZENON, SICIŃSKI, KAZIMIERZ, CZARNY, RAFAŁ
Format: Patent
Sprache:eng ; pol
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the proposed method of analysis of geological structure and relative changes in stress in the layers located above the mining workings of an underground mine the data from the mobile measurement data recorder (3) and from the central station of mine seismic system (10) obtained as a result of closely correlated in time recording of low-frequency seismic noise (Dn.cz.) from the surface system and of seismic bursts generated by mining (Dw.cz.) are transmitted to the stationary processing center (1). Then the recorded measurement data in the time windows of preferably 30-seconds, in the form of the 3-axis recordings of low-frequency seismic noise (Dn.cz.) and the seismic bursts generated by mining (Dw.cz.) are processed using the method of seismic interferometry for the noise recordings, and passive velocity and / or attenuation tomography for the recordings of the mine bursts. On this basis the isolines of the transverse wave velocity and the isolines of the longitudinal wave velocity and / or attenuation in the method of passive velocity and / or attenuation tomography are determined for the studied area of the rock mass (7). These will ultimately represent the average state of relative changes in stress ( ) in the layers above the mining workings (B). At the moment of mining burst (W), the parameters of location coordinates (X, Y, and Z) and the calculated time (To) of its occurrence in the outbreak, are correlated with the times (Tp) of the first enters of the longitudinal wave generated by this rock burst in the recordings of the 3-axis low-frequency measuring stations (5) of the wave recorded on the mine surface, and the corresponding rise times of the signal from the first input of the longitudinal wave until the recorded signal of the rock burst (W) reaches the first maximum in each measurement station (5). In the proposed measuring system the stationary processing center (1) is connected, preferably via the GSM modem (2) to the mobile measurement data recorder (3), and to the central station of mine seismic system (10) which is connected to the clock (GPS) and the visualization-signaling module (11) and via the intrinsically safe digital transmission system (12) and the mine tele-transmission network (13) to at least four underground seismometric stations (14) and / or to at least four underground seismic geophone stations (15).