METHOD PROGRAM AND APPARATUS FOR CONTRASITIVE PRE-TRAINING OF NEURAL NETWORK MODEL BASED ON ELECTROCARDIOGRAM
The present invention relates to a contrastive pre-learning method of a neural network model based on electrocardiogram, which is performed by a computing device including at least one processor. The contrastive pre-learning method comprises: a local information generation step of generating a local...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; kor |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present invention relates to a contrastive pre-learning method of a neural network model based on electrocardiogram, which is performed by a computing device including at least one processor. The contrastive pre-learning method comprises: a local information generation step of generating a local representation context using a self-supervised learning-based model when an unlabeled raw electrocardiogram signal is input; a global information generation step of generating a global representation context by applying time average pooling to the local representation context; and a learning step of pre-learning a neural network model through contrast learning based on learning data including the local and global representation contexts. Therefore, excellent performance in diagnostic classification and patient identification can be exhibited.
본 개시의 일 실시예에 따라 적어도 하나의 프로세서를 포함하는 컴퓨팅 장치에 의해 수행되는, 심전도에 기초한 신경망 모델의 대조적인 사전 학습 방법으로서, 라벨링되지 않은 원시 심전도 신호가 입력되면, 자기지도 학습에 기반한 모델을 이용하여 로컬 특성 컨텍스트(Local Representation Context)를 생성하는 로컬 정보 생성 단계; 상기 로컬 특성 컨텍스트에 시간 평균 풀링(Average Pooling)을 적용하여 글로벌 특성 컨텍스트를 생성하는 글로벌 정보 생성 단계; 및 상기 로컬 특성 컨텍스트와 글로벌 특성 컨텍스트를 포함한 학습 데이터에 기초하여 대조 학습을 통해 신경망 모델을 사전 학습하는 학습 단계를 포함하는 방법을 제공하고자 한다. |
---|