Non-destructive apple sugar content prediction system and method using artificial intelligence

A method for predicting apple sugar content using a machine learning model according to the present disclosure comprises the steps of: obtaining image information of a fruit tree from a terminal; measuring the sugar content of the fruit tree based on the image information; and transmitting the measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HWANG DONG HYUN, KO KYEONG SEOK
Format: Patent
Sprache:eng ; kor
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for predicting apple sugar content using a machine learning model according to the present disclosure comprises the steps of: obtaining image information of a fruit tree from a terminal; measuring the sugar content of the fruit tree based on the image information; and transmitting the measured sugar content information, wherein the machine learning model learns through training data, and the learning data includes 2D and infrared image data, soil environment data, growth environment data, and sunrise and sunset time data. Thus, the present invention can provide the system and method for predicting apple sugar content using artificial intelligence learned through learning data. 본 개시에 따른 기계학습 모델을 이용하여 사과 당도를 예측하는 방법은 단말기로부터 과수의 영상정보를 획득하는 단계; 상기 영상정보에 기초하여 상기 과수의 당도를 측정하는 단계; 및 상기 측정된 당도 정보를 송신하는 단계를 포함하며, 상기 기계학습 모델은 학습데이터를 통해 학습하고, 상기 학습데이터는 2D, 적외선 영상 데이터, 토양환경 데이터, 생장환경 데이터, 일출시간 및 일몰시간 데이터를 포함한다.