INTEGRATED LEARNING SYSTEM AND METHOD OF CLIENT SEVER LINKED WITH CLOUDING SEVER

The present technology discloses an integrated learning system and method of a client server interlocking with a cloud server. A specific implementation example for the present technology performs data standardization and preprocessing after checking a characteristic of sensor data received in a clo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KIM CHANGWOO, KIM HYEONG GOO, CHAE CHULSEOUNG, KANG JEONG HOON
Format: Patent
Sprache:eng ; kor
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KIM CHANGWOO
KIM HYEONG GOO
CHAE CHULSEOUNG
KANG JEONG HOON
description The present technology discloses an integrated learning system and method of a client server interlocking with a cloud server. A specific implementation example for the present technology performs data standardization and preprocessing after checking a characteristic of sensor data received in a cloud server, matches a learning model of a client server and a neural network of the cloud server that matches a preregistered model parameter, enables each learning model of a plurality of client servers to be each integrate-trained according to training of the learning model of the client server, and enables the learning model to be universally applied to a lightweight device according to a reduction of resource usage amount and process amount of the client server. The integrated learning system comprises: a plurality of client servers; and one cloud server. 본 기술은 클라우드 서버와 연동하는 클라이언트 서버의 통합 학습 시스템 및 방법이 개시된다. 이러한 본 기술에 대한 구체적인 구현 예는 클라우드 서버에서 수신된 센서 데이터의 특성을 확인한 다음 데이터 표준화 및 전처리를 수행하고 기 등록된 모델 파라미터와 매칭되는 클라이언트 서버의 학습 모델과 클라우드 서버의 신경망을 매칭시켜 클라이언트 서버의 학습 모델을 훈련함에 따라 복수의 클라이언트 서버의 각각 학습 모델을 각각 통합 훈련할 수 있고, 클라이언트 서버의 자원 사용량 및 처리량을 감소함에 따라, 학습모델을 경량의 디바이스에 범용적으로 적용할 수 있다.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_KR20230097364A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>KR20230097364A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_KR20230097364A3</originalsourceid><addsrcrecordid>eNrjZAjw9AtxdQ9yDHF1UfBxdQzy8_RzVwiODA5x9VVw9HNR8HUN8fB3UfB3U3D28XT1C1EIdg1zDVLw8fTzBuoI9wzxAEr4h7qAtYGkeBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJvHeQkYGRsYGBpbmxmYmjMXGqACFoL9E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>INTEGRATED LEARNING SYSTEM AND METHOD OF CLIENT SEVER LINKED WITH CLOUDING SEVER</title><source>esp@cenet</source><creator>KIM CHANGWOO ; KIM HYEONG GOO ; CHAE CHULSEOUNG ; KANG JEONG HOON</creator><creatorcontrib>KIM CHANGWOO ; KIM HYEONG GOO ; CHAE CHULSEOUNG ; KANG JEONG HOON</creatorcontrib><description>The present technology discloses an integrated learning system and method of a client server interlocking with a cloud server. A specific implementation example for the present technology performs data standardization and preprocessing after checking a characteristic of sensor data received in a cloud server, matches a learning model of a client server and a neural network of the cloud server that matches a preregistered model parameter, enables each learning model of a plurality of client servers to be each integrate-trained according to training of the learning model of the client server, and enables the learning model to be universally applied to a lightweight device according to a reduction of resource usage amount and process amount of the client server. The integrated learning system comprises: a plurality of client servers; and one cloud server. 본 기술은 클라우드 서버와 연동하는 클라이언트 서버의 통합 학습 시스템 및 방법이 개시된다. 이러한 본 기술에 대한 구체적인 구현 예는 클라우드 서버에서 수신된 센서 데이터의 특성을 확인한 다음 데이터 표준화 및 전처리를 수행하고 기 등록된 모델 파라미터와 매칭되는 클라이언트 서버의 학습 모델과 클라우드 서버의 신경망을 매칭시켜 클라이언트 서버의 학습 모델을 훈련함에 따라 복수의 클라이언트 서버의 각각 학습 모델을 각각 통합 훈련할 수 있고, 클라이언트 서버의 자원 사용량 및 처리량을 감소함에 따라, 학습모델을 경량의 디바이스에 범용적으로 적용할 수 있다.</description><language>eng ; kor</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230703&amp;DB=EPODOC&amp;CC=KR&amp;NR=20230097364A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230703&amp;DB=EPODOC&amp;CC=KR&amp;NR=20230097364A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KIM CHANGWOO</creatorcontrib><creatorcontrib>KIM HYEONG GOO</creatorcontrib><creatorcontrib>CHAE CHULSEOUNG</creatorcontrib><creatorcontrib>KANG JEONG HOON</creatorcontrib><title>INTEGRATED LEARNING SYSTEM AND METHOD OF CLIENT SEVER LINKED WITH CLOUDING SEVER</title><description>The present technology discloses an integrated learning system and method of a client server interlocking with a cloud server. A specific implementation example for the present technology performs data standardization and preprocessing after checking a characteristic of sensor data received in a cloud server, matches a learning model of a client server and a neural network of the cloud server that matches a preregistered model parameter, enables each learning model of a plurality of client servers to be each integrate-trained according to training of the learning model of the client server, and enables the learning model to be universally applied to a lightweight device according to a reduction of resource usage amount and process amount of the client server. The integrated learning system comprises: a plurality of client servers; and one cloud server. 본 기술은 클라우드 서버와 연동하는 클라이언트 서버의 통합 학습 시스템 및 방법이 개시된다. 이러한 본 기술에 대한 구체적인 구현 예는 클라우드 서버에서 수신된 센서 데이터의 특성을 확인한 다음 데이터 표준화 및 전처리를 수행하고 기 등록된 모델 파라미터와 매칭되는 클라이언트 서버의 학습 모델과 클라우드 서버의 신경망을 매칭시켜 클라이언트 서버의 학습 모델을 훈련함에 따라 복수의 클라이언트 서버의 각각 학습 모델을 각각 통합 훈련할 수 있고, 클라이언트 서버의 자원 사용량 및 처리량을 감소함에 따라, 학습모델을 경량의 디바이스에 범용적으로 적용할 수 있다.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjw9AtxdQ9yDHF1UfBxdQzy8_RzVwiODA5x9VVw9HNR8HUN8fB3UfB3U3D28XT1C1EIdg1zDVLw8fTzBuoI9wzxAEr4h7qAtYGkeBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJvHeQkYGRsYGBpbmxmYmjMXGqACFoL9E</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>KIM CHANGWOO</creator><creator>KIM HYEONG GOO</creator><creator>CHAE CHULSEOUNG</creator><creator>KANG JEONG HOON</creator><scope>EVB</scope></search><sort><creationdate>20230703</creationdate><title>INTEGRATED LEARNING SYSTEM AND METHOD OF CLIENT SEVER LINKED WITH CLOUDING SEVER</title><author>KIM CHANGWOO ; KIM HYEONG GOO ; CHAE CHULSEOUNG ; KANG JEONG HOON</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_KR20230097364A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; kor</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>KIM CHANGWOO</creatorcontrib><creatorcontrib>KIM HYEONG GOO</creatorcontrib><creatorcontrib>CHAE CHULSEOUNG</creatorcontrib><creatorcontrib>KANG JEONG HOON</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KIM CHANGWOO</au><au>KIM HYEONG GOO</au><au>CHAE CHULSEOUNG</au><au>KANG JEONG HOON</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>INTEGRATED LEARNING SYSTEM AND METHOD OF CLIENT SEVER LINKED WITH CLOUDING SEVER</title><date>2023-07-03</date><risdate>2023</risdate><abstract>The present technology discloses an integrated learning system and method of a client server interlocking with a cloud server. A specific implementation example for the present technology performs data standardization and preprocessing after checking a characteristic of sensor data received in a cloud server, matches a learning model of a client server and a neural network of the cloud server that matches a preregistered model parameter, enables each learning model of a plurality of client servers to be each integrate-trained according to training of the learning model of the client server, and enables the learning model to be universally applied to a lightweight device according to a reduction of resource usage amount and process amount of the client server. The integrated learning system comprises: a plurality of client servers; and one cloud server. 본 기술은 클라우드 서버와 연동하는 클라이언트 서버의 통합 학습 시스템 및 방법이 개시된다. 이러한 본 기술에 대한 구체적인 구현 예는 클라우드 서버에서 수신된 센서 데이터의 특성을 확인한 다음 데이터 표준화 및 전처리를 수행하고 기 등록된 모델 파라미터와 매칭되는 클라이언트 서버의 학습 모델과 클라우드 서버의 신경망을 매칭시켜 클라이언트 서버의 학습 모델을 훈련함에 따라 복수의 클라이언트 서버의 각각 학습 모델을 각각 통합 훈련할 수 있고, 클라이언트 서버의 자원 사용량 및 처리량을 감소함에 따라, 학습모델을 경량의 디바이스에 범용적으로 적용할 수 있다.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; kor
recordid cdi_epo_espacenet_KR20230097364A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title INTEGRATED LEARNING SYSTEM AND METHOD OF CLIENT SEVER LINKED WITH CLOUDING SEVER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KIM%20CHANGWOO&rft.date=2023-07-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EKR20230097364A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true