System and Method for predicting the winning bid rate of real estate auction through hierarchical analysis and Transfer Learning
The present invention is a system for predicting a winning bid rate of real estate auctions using hierarchical analysis and transfer learning. For a system for predicting a winning bid rate of real estate auctions which has a control server (10) and a real estate auction article database (20) connec...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; kor |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present invention is a system for predicting a winning bid rate of real estate auctions using hierarchical analysis and transfer learning. For a system for predicting a winning bid rate of real estate auctions which has a control server (10) and a real estate auction article database (20) connected via a network and conducts deep learning on auction articles by operation processing means comprising a computer to predict winning bid rates, the control server (10) comprises: a data processing and variable generating unit (100) which processes auction article data and generates variables; a data classifying unit (200) which classifies the processed auction article data according to regions and usages; a regional stratification classifying unit (300) which classifies the classified auction article data into multiple regional classes based on broadness and narrowness of regions; and a winning bid rate predicting unit (400) which conducts deep learning and transfer learning on the regional stratified auction article data to generate a learning model, and predicts a winning bid rate of an auction article.
본 발명은 제어서버(10) 및 부동산 경매물건 데이터베이스(20)가 네트워크로 연결되고, 컴퓨터를 포함하는 연산처리수단에 의해 경매물건 데이터를 딥러닝하여 낙찰가율을 예측하도록 수행되는 부동산 경매 낙찰가율 예측시스템으로서, 상기 제어서버(10)는 경매물건 데이터를 가공하고, 변수를 생성하는 데이터가공 및 변수생성부(100); 가공된 경매물건 데이터를 지역별 및 용도별로 분류하는 데이터 분류부(200); 분류된 경매물건 데이터를 지역의 광협을 기준으로 복수개의 지역계층으로 분류하는 지역계층화 분류부(300); 및 지역계층화된 경매물건 데이터를 딥러닝 및 전이학습하여 학습모델을 생성하고 경매물건의 낙찰가율을 예측하는 낙찰가율 예측부(400)를 포함하는 것을 특징으로 하는 계층적 분석 및 전이학습을 이용한 부동산 경매 낙찰가율 예측시스템이다. |
---|