A recurrence prediction system based on deep learning for prostate cancer using time series data of examination
The present invention relates to a prostate cancer recurrence prediction system based on deep learning using time series examination data, which is able to collect examination data of regular examinations before and after the diagnosis and the surgery for prostate cancer, especially the prostate spe...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; kor |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present invention relates to a prostate cancer recurrence prediction system based on deep learning using time series examination data, which is able to collect examination data of regular examinations before and after the diagnosis and the surgery for prostate cancer, especially the prostate specific antigen (PSA) data of a patient, apply the collected time series data of the PSA to a deep learning neural network, and predict the prostate cancer recurrence of the patient, comprising: a neural network module having a circulation neural network; a pre-processing unit which normalizes a large number of a series of PSA levels in the order of time series; a neural network learning unit which makes the PSA learning data pre-processed by the neural network pre-processing unit, and makes the neural network learn by using the pre-processed learning data; and a determination unit which receives the series of PSA data of the patient, makes the neural network pre-processing unit pre-process the PSA data of the patient, applies the pre-processed data to the neural network, and outputs the presence or absence of the recurrence of prostate cancer in accordance with the results of application. The present invention is able to normalize the examined PSA data on a regular basis in a time series, pre-process the PSA data, make the deep learning neural network more effectively learn, and more precisely diagnose the recurrence of prostate cancer.
전립선암의 진단 전후 및 수술 전후에 정기적으로 검진된 검진 데이터, 특히, 환자의 전립선 특이 항원검사(PSA) 데이터를 수집하고, 수집된 PSA의 시계열 데이터를 딥러닝 신경망에 적용하여, 해당 환자의 전립선암 재발을 예측하는, 시계열 검진 데이터를 이용한 딥러닝 기반 전립선암 재발예측 시스템에 관한 것으로서, 순환 신경망을 구비한 신경망 모듈; 일련의 다수의 PSA(Prostate Specific Antige) 수치를 시계열 순으로 정규화 하는 전처리부; PSA 학습 데이터를 상기 신경망 전처리부에 의해 전처리하게 하고, 전처리된 학습 데이터를 이용하여 상기 신경망을 학습시키는 신경망 학습부; 및, 환자의 일련의 PSA 데이터를 수신하여, 상기 환자의 PSA 데이터를 상기 신경망 전처리부에 의해 전처리하게 하고, 전처리된 데이터를 상기 신경망에 적용하고, 적용 결과에 따라 전립선암의 재발 여부를 출력하는 판단부를 포함하는 구성을 마련하여, 정기적으로 검진된 PSA 데이터를 시계열로 정규화 하여 전처리함으로써, 딥러닝 신경망을 보다 효과적으로 학습시킬 수 있고, 전립선암의 재발을 보다 정확하게 진단할 수 있다. |
---|