METHOD AND COMPUTER PROGRAM TO PREDICT NEOANTIGEN BY STANDARDIZING THE LENGTH OF PEPTIDES OF VARIOUS LENGTHS BY FOLDING

According to the present invention, disclosed is a method for processing a peptide sequence exceeding a unit length through a folding process in predicting a neoantigen by using the peptide sequence and HLA class I and/or II allele sequences. According to this, a peptide sequence included in a cance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: OH SE JIN, PAIK SOON MYUNG, HONG SEONG EUI, HWANG TAE SOON
Format: Patent
Sprache:eng ; kor
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:According to the present invention, disclosed is a method for processing a peptide sequence exceeding a unit length through a folding process in predicting a neoantigen by using the peptide sequence and HLA class I and/or II allele sequences. According to this, a peptide sequence included in a cancer tissue can determine a neoantigen in a cancer tissue regardless of diversity of lengths. Through this, it is possible to overcome imbalance and lack of information in learning data by a length and predict a binding force more accurately so as to determine a new antigen in a cancer tissue. 본 개시는 펩타이드 서열 및 HLA 클래스 I 및/또는 II 대립유전자 서열을 이용하여 신항원을 예측함에 있어서, 단위 길이를 초과하는 펩타이드 서열을 접힘의 과정으로 처리하는 방법을 개시한다. 이에 따르면, 암 조직에 포함된 펩타이드 서열은 길이의 다양성에 상관없이, 암 조직 내 신항원을 결정할 수 있다. 이를 통해 길이 별 학습데이터의 불균형 및 정보 부족을 극복하고 보다 정확한 결합력을 예측하여 암 조직 내 신항원을 결정할 수 있다.