FREQUENCY SPECTRUM REPRODUCING METHOD AND RECEIVER
To implement spectrum reproduction processing using software.SOLUTION: A frequency spectrum reproducing method includes: sampling, without using BPF, a receiving frequency spectrum with K kinds of sampling frequencies; performing Fourier transformation independently to obtain frequency spectra from...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To implement spectrum reproduction processing using software.SOLUTION: A frequency spectrum reproducing method includes: sampling, without using BPF, a receiving frequency spectrum with K kinds of sampling frequencies; performing Fourier transformation independently to obtain frequency spectra from 0 to a Nyquist frequency group; setting a frequency pitch width of K frequency spectra equally; generating a vector (y) by combining frequency spectrum elements; generating a coefficient matrix (A) using frequency elements corresponding to a frequency corresponding to a frequency group given by a resolution corresponding to the frequency pitch width with frequencies from 0 to a system upper limit frequency and a folding frequency in the Nyquist frequencies, and matrix elements corresponding to the elements of (y), as coefficients corresponding to frequency characteristics from a signal branch point before folding in the Nyquist frequencies to an analog-digital converter, and other elements as zero; and calculating a solution (x) of (y)=(A)(x) with an overdetermined algorithm using (y) and (A).SELECTED DRAWING: Figure 9
【課題】ソフトウェアを用いたスペクトラム再生処理を実現する。【解決手段】BPFを用いず、受信周波数スペクトラムをK種類のサンプリング周波数でサンプリングし、独立にフーリエ変換して、0からナイキスト周波数群までの周波数スペクトラムを取得し、K個の周波数スペクトラムの周波数刻み幅を等しく設定し、それぞれの周波数スペクトラム要素を結合したベクトル(y)を生成し、0からシステムの上限周波数までの周波数で周波数刻み幅に相当する分解能で与えられた周波数群に対応した周波数とナイキスト周波数群での折り返し周波数とに相当する周波数要素及び(y)の要素に対応する行列要素をナイキスト周波数群での折り返し前の信号分岐点からアナログデジタル変換器までの周波数特性に当たる係数とし、その他の要素をゼロとした係数行列(A)を生成し、(y)と(A)とを用い、優決定型アルゴリズムで(y)=(A)(x)の解(x)を算出する。【選択図】図9 |
---|