ROCK FALL PREDICTION DEVICE, MACHINE LEARNING DEVICE, ROCK FALL PREDICTION METHOD, AND MACHINE LEARNING METHOD

To provide a rock fall prediction device capable of predicting a portion having a risk of rock fall with higher accuracy.SOLUTION: A rock fall prediction device 5 for predicting rock fall in a tunnel face, comprises: a determination data acquisition unit 500 that acquires determination data includin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MIKI SHIGERU, MIYAJIMA YASUYUKI, HASHIDATE KENJI, NOMURA KIRITSU, TSURUTA RYOSUKE, KOJIMA HIDESATO, YAMAMOTO TAKUJI, SUGIYAMA TAKASHI, TAKAHASHI HIROSHI, TANAKA TOUZO, SHIRASAGI TAKU, TSUJIKAWA YASUTO, TATSUMI JUNICHI, KANEOKA MIKI, YOSHIKAWA TADASHI, KAMIOKA SHINYA, KAKIMI KOSUKE
Format: Patent
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To provide a rock fall prediction device capable of predicting a portion having a risk of rock fall with higher accuracy.SOLUTION: A rock fall prediction device 5 for predicting rock fall in a tunnel face, comprises: a determination data acquisition unit 500 that acquires determination data including prediction images in which the tunnel face is imaged; a learned model storage unit 52 that stores a learning model 2 in which a correlation between input data including learning images in which the tunnel face is imaged, and output data including data on indication locations of rock fall prediction and indication locations of rock fall factor patterns included in the learning images, is machine-learned; and an inference unit 501 that inputs the determination data acquired by the determination data acquisition unit 500 to the learning model, and infers rock fall prediction locations on the tunnel face imaged in the prediction images.SELECTED DRAWING: Figure 10 【課題】より精度高く肌落ちの危険性がある箇所を予測することができる肌落ち予測装置を提供する。【解決手段】本発明に係る肌落ち予測装置5は、トンネル切羽における肌落ちを予測する肌落ち予測装置5であって、トンネル切羽が撮像された予測用画像を含む判定データを取得する判定データ取得部500と、前記トンネル切羽が撮像された学習用画像を含む入力データと、当該学習用画像に含まれる肌落ち予測指摘箇所と肌落ち要因パターン指摘箇所とに関するデータを含む出力データとの相関関係を機械学習させた学習モデル2を記憶する学習済みモデル記憶部52と、前記判定データ取得部500により取得された前記判定データを前記学習モデルに入力し、前記予測用画像に撮像された前記トンネル切羽の肌落ち予測箇所を推論する推論部501とを備えることを特徴とする。【選択図】 図10