CALCULATOR SYSTEM, DEMAND PREDICTION METHOD OF ITEM, AND PROGRAM

To produce a model having high prediction accuracy using a loss function suitable for learning of the model while automatically setting the loss function.SOLUTION: A calculator system manages a plurality of loss functions and a history concerning demand for an item and executes: first processing whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: UEKI TAKAO, OJIRO DAICHI, YAMAMOTO RYU, WATANABE TAKASHI, CHEN CHENG
Format: Patent
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To produce a model having high prediction accuracy using a loss function suitable for learning of the model while automatically setting the loss function.SOLUTION: A calculator system manages a plurality of loss functions and a history concerning demand for an item and executes: first processing which accepts information on a condition to be satisfied by an evaluation index; second processing which produces an integrated loss function using a plurality of loss functions multiplied by a weight; third processing which calculates the evaluation index on the basis of demand prediction of the item, obtained by producing a model by using machine learning with the integrated loss function and the history and inputting the history into the model; fourth processing which determines whether or not the condition is satisfied on the basis of the accepted information and the evaluation index; fifth processing which, when the condition is not satisfied, updates the weight on the basis of the evaluation index and executes the third processing; and sixth processing which, when the condition is satisfied, outputs the demand prediction of the item.SELECTED DRAWING: Figure 1 【課題】モデルの学習に適した損失関数を自動的に設定するとともに、当該損失関数を用いて予測精度が高いモデルを生成する。【解決手段】計算機システムは、複数の損失関数、及びアイテムの需要に関する履歴を管理し、評価指標が満たすべき条件の情報を受け付ける第1処理と、重みが乗算された複数の損失関数を用いて統合損失関数を生成する第2処理と、統合損失関数及び履歴を用いた機械学習によってモデルを生成し、モデルに履歴を入力して得られたアイテムの需要予測に基づいて、評価指標を算出する第3処理と、受け付けた情報及び評価指標に基づいて、条件を満たすか否かを判定する第4処理と、条件を満たさない場合、評価指標に基づいて重みを更新し、第3処理を実行する第5処理と、条件を満たす場合、アイテムの需要予測を出力する第6処理と、を実行する。【選択図】図1