LEARNING DEVICE FOR UNDERWATER TARGET DETECTION AND UNDERWATER TARGET DETECTOR
To provide a system that realizes highly accurate target detection using many learning models that depend on observation conditions on an underwater target detector that uses a neural network.SOLUTION: A learning model aggregate 114 in which multiple learning models for observation data of underwate...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To provide a system that realizes highly accurate target detection using many learning models that depend on observation conditions on an underwater target detector that uses a neural network.SOLUTION: A learning model aggregate 114 in which multiple learning models for observation data of underwater targets accumulated together with observation conditions 101 thereof is created, distance calculation means 109 that calculates the distance among calculation means 101 is provided, one or more learning models supported by model selection means 108 are selected based on the distance among the conditions of the learning model aggregate 114, and an underwater target is estimated by inference means 122 based on the extracted learning model.SELECTED DRAWING: Figure 1
【課題】ニューラルネットを用いた水中目標物の探知装置で、観測条件に依存した学習モデルを多数運用し、高精度の目標物探知を実現するシステムを提供する。【解決手段】水中目標物の観測データに関する学習モデルをその観測条件101とともに複数蓄積した学習モデル集合体114を作り、観測条件101間の距離を計算する距離計算手段109を設け、学習モデル集合体114の条件間の距離に基づいて、モデル選択手段108が対応する学習モデルを1つ以上選択し、抽出した学習モデルにより推論手段122が水中目標物の推定をする。【選択図】図1 |
---|