PROGRAM, DEVICE, AND METHOD WHICH COMPLEMENT MISSING VALUE IN TIME-SERIES MEASUREMENT VALUE GROUP OF PLURALITY OF SENSORS
To provide a program, a device, and a method which, on the basis of an association between time-series measurement value groups in a plurality of sensors, complement a missing value in some of the sensors.SOLUTION: An encoder is caused to function as: measurement value group generation means which c...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To provide a program, a device, and a method which, on the basis of an association between time-series measurement value groups in a plurality of sensors, complement a missing value in some of the sensors.SOLUTION: An encoder is caused to function as: measurement value group generation means which creates, for each sensor i, a plurality j of shift measurement value groups xi,j in which a measurement value group xi for each period tm during a predetermined time period Td is shifted by the period tm for each unit time Th; feature extraction means in which, for each sensor i, recurrent neural networks connected sequentially in series for each shift measurement value group xi,j inputs each shift measurement value group xi,j and a hidden layer vector hi,j of the recurrent neural network in a time series pre-stage, and outputs a hidden layer vector hi,j+1 to a time series post-stage; and a latent representation generation engine which generates, for each sensor i, a latent representation zi of normalized probability distribution from a hidden layer vector hi output from a terminal recurrent neural network xi,J.SELECTED DRAWING: Figure 1
【課題】複数のセンサにおける時系列の計測値群同士の関連性に基づいて、一部のセンサにおける欠損値を補完するプログラム、装置及び方法を提供する。【解決手段】エンコーダは、各センサiについて、所定期間Tdにおける周期tm毎の計測値群xiを、単位時間Th毎に周期tmずつシフトさせた複数jのシフト計測値群xi,jを作成する計測値群生成手段と、各センサiについて、シフト計測値群xi,j毎に時系列直列に接続された各再帰型ニューラルネットワークが、各シフト計測値群xi,jと、時系列前段の再帰型ニューラルネットワークの隠れ層ベクトルhi,jとを入力し、時系列後段へ隠れ層ベクトルhi,j+1を出力する特徴抽出手段と、各センサiについて、末端の再帰型ニューラルネットワークxi,Jから出力された隠れ層ベクトルhiから、正規化された確率分布の潜在表現ziを生成する潜在表現生成エンジンとして機能させる。【選択図】図1 |
---|