INFORMATION PROCESSING APPARATUS AND PROGRAM
PROBLEM TO BE SOLVED: To automatically add a new feature item based on a combination of a plurality of related items included in past data to a feature used when predicting a prediction subject value using machine learning.SOLUTION: A feature generation unit 26 generates a group of features of a gro...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PROBLEM TO BE SOLVED: To automatically add a new feature item based on a combination of a plurality of related items included in past data to a feature used when predicting a prediction subject value using machine learning.SOLUTION: A feature generation unit 26 generates a group of features of a group of past data based on the group of past data and feature definition information 22. A prediction unit 28 constructs a prediction model based on a feature of a group of learning data which is a part of the group of past data and a sale prediction value, and predicts a sale prediction value with respect to each of validation data based on the prediction model and a group of validation data which is a part of the group of past data. An error calculation unit 39 calculates an error between the sales prediction value and a sales actual value with respect to each of the validation data. A feature combination error calculation unit 34 calculates an average error of the plurality of validation data corresponding to the feature combination for each of feature combinations defined by the feature combination definition unit 32. A new feature item addition unit 36 generates a new feature item based on the specific feature combination including a maximum average error and adds it to the feature definition information 22.SELECTED DRAWING: Figure 1
【課題】機械学習を用いて予測対象値の予測を行う際に用いられる素性に、過去データが有する複数の関連項目の組み合わせに基づく新素性項目を自動追加する。【解決手段】素性生成部26は、過去データ群と素性定義情報22に基づいて、過去データ群の素性群を生成する。予測部28は、過去データ群の一部である学習データ群の素性と売上実績値に基づいて予測モデルを構築し、予測モデルと過去データ群の一部である検証データ群の素性に基づいて各検証データに対する売上予測値を予測する。誤差算出部39は、各検証データについての売上予測値と売上実績値の誤差を算出する。素性組合せ誤差算出部34は、素性組合せ定義部32により定義された素性組合せ毎に、当該素性組合せに該当する複数の検証データの平均誤差を算出する。新素性項目追加部36は、最大平均誤差を有する特定素性組合せに基づいて新素性項目を生成し、素性定義情報22に追加する。【選択図】図1 |
---|