Identifying source datasets that fit transfer learning process for target domain
A method for quantifying a similarity between a target dataset and multiple source datasets and identifying one or more source datasets that are most similar to the target dataset is provided. The method includes receiving, at a computing system, source datasets relating to a source domain and a tar...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method for quantifying a similarity between a target dataset and multiple source datasets and identifying one or more source datasets that are most similar to the target dataset is provided. The method includes receiving, at a computing system, source datasets relating to a source domain and a target dataset relating to a target domain of interest. Each dataset is arranged in a tabular format including columns and rows, and the source datasets and the target dataset include a same feature space. The method also includes pre-processing, via a processor of the computing system, each source-target dataset pair to remove non-intersecting columns. The method further includes calculating at least two of a dataset similarity score, a row similarity score, and a column similarity score for each source-target dataset pair, and summarizing the calculated similarity scores to identify one or more source datasets that are most similar to the target dataset. |
---|