Low entropy browsing history for content quasi-personalization

The present disclosure provides systems and methods for content quasi¬ personalization or anonymized content retrieval via aggregated browsing history of a large plurality of devices, such as millions or billions of devices. A sparse matrix may be constructed from the aggregated browsing history, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Daniel Robert Ramage, Marcel M.M Yung, Michael S Kleber, Josh Forrest Karlin, Gang Wang, Charles Schafer Harrison
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present disclosure provides systems and methods for content quasi¬ personalization or anonymized content retrieval via aggregated browsing history of a large plurality of devices, such as millions or billions of devices. A sparse matrix may be constructed from the aggregated browsing history, and dimensionally reduced, reducing entropy and providing anonymity for individual devices. Relevant content may be selected via quasi-personalized clusters representing similar browsing histories, without exposing individual device details to content providers.